PAPER-I
1. Atomic Structure:
Heisenberg's uncertainty principle, Schrodinger wave
equation (time independent); Interpretation of wave function, particle in
one-dimensional box, quantum numbers, hydrogen atom wave functions; Shapes of
s, p and d orbitals.
2. Chemical Bonding:
Ionic bond, characteristics of ionic compounds, lattice
energy, Born-Haber cycle; covalent bond and its general characteristics, polarities
of bonds in molecules and their dipole moments; Valence bond theory, concept of
resonance and resonance energy; Molecular orbital theory (LCAO method); bonding
in H2+, H2, He2+ to Ne2, NO, CO, HF, and CN–; Comparison of valence bond and
molecular orbital theories, bond order, bond strength and bond length.
3. Solid State:
Crystal systems; Designation of crystal faces, lattice
structures and unit cell; Bragg's law; X-ray diffraction by crystals; Close
packing, radius ratio rules, calculation of some limiting radius ratio values;
Structures of NaCl, ZnS, CsCl and CaF2; Stoichiometric and nonstoichiometric
defects, impurity defects, semi-conductors.
4. The Gaseous State and Transport Phenomenon:
Equation of state for real gases, intermolecular
interactions and critical phenomena and liquefaction of gases, Maxwell's
distribution of speeds, intermolecular collisions, collisions on the wall and
effusion; Thermal conductivity and viscosity of ideal gases.
5. Liquid State:
Kelvin equation; Surface tension and surface energy,
wetting and contact angle, interfacial tension and capillary action.
6. Thermodynamics:
Work, heat and internal energy; first law of
thermodynamics.
Second law of thermodynamics; entropy as a state
function, entropy changes in various processes, entropy–reversibility and
irreversibility, Free energy functions; Thermodynamic equation of state;
Maxwell relations; Temperature, volume and pressure dependence of U, H, A, G,
Cp and Cv, ? and ?; J-T effect and inversion temperature; criteria for
equilibrium, relation between equilibrium constant and thermodynamic
quantities; Nernst heat theorem, introductory idea of third law of
thermodynamics.
7. Phase Equilibria and Solutions:
Clausius-Clapeyron equation; phase diagram for a pure
substance; phase equilibria in binary systems, partially miscible liquids–upper
and lower critical solution temperatures; partial molar quantities, their
significance and determination; excess thermodynamic functions and their
determination.
8. Electrochemistry:
Debye-Huckel theory of strong electrolytes and
Debye-Huckel limiting Law for various equilibrium and transport properties.
Galvanic cells, concentration cells; electrochemical
series, measurement of e.m.f. of cells and its applications fuel cells and
batteries.
Processes at electrodes; double layer at the interface;
rate of charge transfer, current density; overpotential; electroanalytical
techniques: Polarography, amperometry, ion selective electrodes and their uses.
9. Chemical Kinetics:
Differential and integral rate equations for zeroth,
first, second and fractional order reactions; Rate equations involving reverse,
parallel, consecutive and chain reactions; branching chain and explosions;
effect of temperature and pressure on rate constant; Study of fast reactions by
stop-flow and relaxation methods; Collisions and transition state theories.
10. Photochemistry:
Absorption of light; decay of excited state by different
routes; photochemical reactions between hydrogen and halogens and their quantum
yields.
11. Surface Phenomena and Catalysis:
Absorption from gases and solutions on solid adsorbents,
Langmuir and B.E.T. adsorption isotherms; determination of surface area,
characteristics and mechanism of reaction on heterogeneous catalysts.
12. Bio-inorganic Chemistry:
Metal ions in biological systems and their role in ion
transport across the membranes (molecular mechanism), oxygen-uptake proteins,
cytochromes and ferredoxins.
13. Coordination Compounds:
(i) Bonding theories of metal complexes; Valence bond
theory, crystal field theory and its modifications; applications of theories in
the explanation of magnetism and electronic spectra of metal complexes.
(ii) Isomerism in coordination compounds; IUPAC
nomenclature of coordination compounds; stereochemistry of complexes with 4 and
6 coordination numbers; chelate effect and polynuclear complexes; trans effect
and its theories; kinetics of substitution reactions in square-planer complexes;
thermodynamic and kinetic stability of complexes.
(iii) EAN rule, Synthesis structure and reactivity of
metal carbonyls; carboxylate anions, carbonyl hydrides and metal nitrosyl
compounds.
(iv) Complexes with aromatic systems, synthesis, structure
and bonding in metal olefin complexes, alkyne complexes and cyclopentadienyl
complexes; coordinative unsaturation, oxidative addition reactions, insertion
reactions, fluxional molecules and their characterization; Compounds with
metal-metal bonds and metal atom clusters.
14. Main Group Chemistry:
Boranes, borazines, phosphazenes and cyclic phosphazene,
silicates and silicones, Interhalogen compounds; Sulphur – nitrogen compounds,
noble gas compounds.
15. General Chemistry of ‘f’ Block Elements: Lanthanides
and actinides; separation, oxidation states, magnetic and spectral properties;
lanthanide contraction.
Paper-II
1. Delocalised Covalent Bonding:
Aromaticity, anti-aromaticity; annulenes, azulenes,
tropolones, fulvenes, sydnones.
2. (i) Reaction Mechanisms: General methods (both kinetic
and non-kinetic) of study of mechanism of organic reactions: isotopic method,
cross-over experiment, intermediate trapping, stereochemistry; energy of
activation; thermodynamic control and kinetic control of reactions.
(ii) Reactive Intermediates: Generation, geometry,
stability and reactions of carbonium ions and carbanions, free radicals,
carbenes, benzynes and nitrenes.
(iii) Substitution Reactions: SN1, SN2 and SNi
mechanisms; neighbouring group participation; electrophilic and nucleophilic
reactions of aromatic compounds including heterocyclic compounds–pyrrole,
furan, thiophene and indole.
(iv) Elimination Reactions: E1, E2 and E1cb mechanisms;
orientation in E2 reactions–Saytzeff and Hoffmann; pyrolytic syn elimination –
Chugaev and Cope eliminations.
(v) Addition Reactions: Electrophilic addition to C=C and
C?C; nucleophilic addition to C=0, C?N, conjugated olefins and carbonyls.
(vi) Reactions and Rearrangements: (a)
Pinacol-pinacolone, Hoffmann, Beckmann, Baeyer–Villiger, Favorskii, Fries,
Claisen, Cope, Stevens and Wagner-Meerwein rearrangements.
(b) Aldol condensation, Claisen condensation, Dieckmann,
Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter
reactions; Stobbe, benzoin and acyloin condensations; Fischer indole synthesis,
Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and
Reformatsky reactions.
3. Pericyclic Reactions: Classification and examples;
Woodward-Hoffmann rules – electrocyclic reactions, cycloaddition reactions [2+2
and 4+2] and sigmatropic shifts [1, 3; 3, 3 and 1, 5] FMO approach.
4. (i) Preparation and Properties of Polymers: Organic
polymers–polyethylene, polystyrene, polyvinyl chloride, teflon, nylon, terylene,
synthetic and natural rubber.
(ii) Biopolymers: Structure of proteins, DNA and RNA.
5. Synthetic Uses of Reagents:
OsO4, HIO4, CrO3, Pb(OAc)4, SeO2, NBS, B2H6, Na-Liquid
NH3, LiAlH4, NaBH4, n-BuLi and MCPBA.
6. Photochemistry:
Photochemical reactions of simple organic compounds,
excited and ground states, singlet and triplet states, Norrish-Type I and Type
II reactions.
7. Spectroscopy:
Principle and applications in structure elucidation:
(i) Rotational: Diatomic molecules; isotopic substitution
and rotational constants.
(ii) Vibrational: Diatomic molecules, linear triatomic
molecules, specific frequencies of functional groups in polyatomic molecules.
(iii) Electronic: Singlet and triplet states; n p* and p
p* transitions; application to conjugated double bonds and conjugated
carbonyls–Woodward-Fieser rules; Charge transfer spectra.
(iv) Nuclear Magnetic Resonance (1H NMR): Basic
principle; chemical shift and spin-spin interaction and coupling constants.
(v) Mass Spectrometry: Parent peak, base peak, metastable
peak, McLafferty rearrangement.
No comments:
Post a Comment